If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+11z+10=0
a = 3; b = 11; c = +10;
Δ = b2-4ac
Δ = 112-4·3·10
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*3}=\frac{-12}{6} =-2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*3}=\frac{-10}{6} =-1+2/3 $
| x^2+x=648 | | 3x+2(2x-2)=9 | | -1/3(n+15)=-21 | | 4y2+8y+4=0 | | 6-x/3=1 | | X^2-5x=-x | | 8v=4v2-4 | | 4q2=-8q | | 32=x√3 | | (10/(7+(-5x))=(16/(5+7x)) | | (x+9)x=16^2 | | 8p2+7=0 | | 2+4/9x=2+x | | 5u^2+60u+100=0 | | 2z2=2z | | -19=b-9 | | Y=1.5+x2 | | (x+9)x=256 | | -100+33/(1+r)(r)=0 | | 9q2-5q=-4 | | 7x+35=-35 | | (5-v)(5v+9)=0 | | Y=2+x/0.5 | | x/3+13=21 | | 1/(1+r)*(33/r)-100=0 | | 5^(x-2)=12 | | 6s2+7=0 | | 1/(1+r)(33/r)-100=0 | | (x/5)+11=-9 | | 4s+8=5+4s | | p2+2p+1=0 | | 2n=15-7 |